8×8ピクセルに縮小した画像から元の画像を予想する技術をGoogle Brainが開発 – GIGAZINE

Home » 01経営戦略・事業戦略 » 8×8ピクセルに縮小した画像から元の画像を予想する技術をGoogle Brainが開発 – GIGAZINE
01経営戦略・事業戦略, パレートの法則 コメントはまだありません








ディープラーニングについて研究するGoogle Brainが、高解像度画像を8×8(64)ピクセルに変換した画像から元の画像を推測する技術「Pixel Recursive Super Resolution」を発表しました。

Pixel Recursive Super Resolution
(PDFファイル)https://arxiv.org/pdf/1702.00783.pdf

Google Brain super-resolution image tech makes “zoom, enhance!” real | Ars Technica
https://arstechnica.com/information-technology/2017/02/google-brain-super-resolution-zoom-enhance/

下の画像の右端が元の「ソース画像」で、これを8×8ピクセルサイズに圧縮したのが左端の「8×8サンプル」です。この8×8サンプルからGoogle Brainのディープラーニング技術が予想した元画像が中央の列の「32×32サンプル」。8×8サンプルから16倍の解像度にアップスケールされた予想画像は、8×8サンプルの少ない情報からソース画像に近い画像を再現できているのがわかります。


Google Brainは2つのニューラルネットワークトレーニングを用いて画像予測を行っています。一つは似たような高解像度イメージを圧縮したデータと8×8サンプルを比較してパターンと色をチェックする「conditioning network」で、もう一つがPixelCNNを使って高解像の詳細部分を追加する「prior network」。この2つのニューラルネットワークを組み合わせることで予測画像を作成しているとのこと。


左端が8×8サンプルで、残りの4つがニューラルネットワークから作り出された4種類の予測画像。人物画だけでなく寝室のイメージを再現することもできます。


もちろんPixel Recursive Super Resolutionは完璧に元画像を再現できるわけではありませんが、Pixel Recursive Super Resolutionの技術を高めていくことで、映画の世界でよくある「もっと画像をアップ(ズーム)にしてみて!」というシーンが現実のものになるかもしれません。

Let’s Enhance (HD) – YouTube

・関連記事
Googleが低解像度画像を爆速で高画質化する機械学習を使った技術「RAISR」を発表 – GIGAZINE

無料で二次元画像を人工知能が補完してハイクオリティで1.6倍/2倍に拡大できる「waifu2x」 – GIGAZINE

ラフ画へ自動的にペン入れして線画にする恐るべきニューラルネットワーク技術を早稲田大学の研究室が開発 – GIGAZINE

ドットの粒々感を軽減するアルゴリズムを簡単に比較できる「Depixelizing Pixel Art」 – GIGAZINE

ディープラーニングを駆使してAIがトリックオアトリートなホラー画像を自動生成する「Nightmare Machine」 – GIGAZINE




・関連コンテンツ

3275



コメントを残す